Search results for "feature importance"

showing 5 items of 5 documents

Assessment of the interpretability of data mining for the spatial modelling of water erosion using game theory

2021

Abstract This study undertook a comprehensive application of 15 data mining (DM) models, most of which have, thus far, not been commonly used in environmental sciences, to predict land susceptibility to water erosion hazard in the Kahorestan catchment, southern Iran. The DM models were BGLM, BGAM, Cforest, CITree, GAMS, LRSS, NCPQR, PLS, PLSGLM, QR, RLM, SGB, SVM, BCART and BTR. We identified 18 factors usually considered as key controls for water erosion, comprising 10 factors extracted from a digital elevation model (DEM), three indices extracted from Landsat 8 images, a sediment connectivity index (SCI) and three other intrinsic factors. Three indicators consisting of MAE, MBE, RMSE, and…

Hazard (logic)Hazard map010504 meteorology & atmospheric sciencesMean squared error04 agricultural and veterinary sciencesCatchment managementcomputer.software_genre01 natural sciencesShapley additive explanationsSupport vector machineErosionTopological index040103 agronomy & agricultureFeature (machine learning)Permutation feature importance measure0401 agriculture forestry and fisheriesSpatial mappingData miningDigital elevation modelGame theorycomputer0105 earth and related environmental sciencesEarth-Surface ProcessesMathematicsInterpretability
researchProduct

Machine learning for mortality analysis in patients with COVID-19

2020

This paper analyzes a sample of patients hospitalized with COVID-19 in the region of Madrid (Spain). Survival analysis, logistic regression, and machine learning techniques (both supervised and unsupervised) are applied to carry out the analysis where the endpoint variable is the reason for hospital discharge (home or deceased). The different methods applied show the importance of variables such as age, O2 saturation at Emergency Rooms (ER), and whether the patient comes from a nursing home. In addition, biclustering is used to globally analyze the patient-drug dataset, extracting segments of patients. We highlight the validity of the classifiers developed to predict the mortality, reaching…

feature importanceComputer scienceHealth Toxicology and MutagenesisPneumonia ViralDecision treelcsh:MedicineSample (statistics)Machine learningcomputer.software_genreLogistic regressionArticlesurvival analysisBiclustering03 medical and health sciencesBetacoronavirus0302 clinical medicineMachine learningRisk of mortalitygraphical modelsHumans030212 general & internal medicineGraphical modelPandemicsSurvival analysisInformática0303 health sciences030306 microbiologybusiness.industrySARS-CoV-2Decision Treeslcsh:RPublic Health Environmental and Occupational HealthCOVID-19Decision ruleSurvival analysisFeature importancemachine learningSpainArtificial intelligenceGraphical modelsbusinessCoronavirus Infectionscomputer
researchProduct

Exploiting Data Analytics and Deep Learning Systems to Support Pavement Maintenance Decisions

2021

Road networks are critical infrastructures within any region and it is imperative to maintain their conditions for safe and effective movement of goods and services. Road Management, therefore, plays a key role to ensure consistent efficient operation. However, significant resources are required to perform necessary maintenance activities to achieve and maintain high levels of service. Pavement maintenance can typically be very expensive and decisions are needed concerning planning and prioritizing interventions. Data are key towards enabling adequate maintenance planning but in many instances, there is limited available information especially in small or under-resourced urban road authorit…

feature importancepavement management systemComputer science0211 other engineering and technologiespavement maintenance decision02 engineering and technologypavement management systemslcsh:Technologylcsh:ChemistryGoods and services021105 building & construction0502 economics and business11. SustainabilitySettore ICAR/04 - Strade Ferrovie Ed AeroportiGeneral Materials Scienceroad asset databasesInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processes050210 logistics & transportationbusiness.industryLevel of servicelcsh:TProcess Chemistry and TechnologyDeep learning05 social sciencesGeneral EngineeringPavement managementdeep learningTimelinedata mininglcsh:QC1-999Computer Science Applicationsroad asset databaseWorkflowRisk analysis (engineering)lcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040Key (cryptography)Settore ICAR/17 - DisegnoArtificial intelligencepavement maintenance decisionsbusinesslcsh:Engineering (General). Civil engineering (General)Predictive modellinglcsh:PhysicsApplied Sciences
researchProduct

Comparison of feature importance measures as explanations for classification models

2021

AbstractExplainable artificial intelligence is an emerging research direction helping the user or developer of machine learning models understand why models behave the way they do. The most popular explanation technique is feature importance. However, there are several different approaches how feature importances are being measured, most notably global and local. In this study we compare different feature importance measures using both linear (logistic regression with L1 penalization) and non-linear (random forest) methods and local interpretable model-agnostic explanations on top of them. These methods are applied to two datasets from the medical domain, the openly available breast cancer …

feature importanceComputer scienceGeneral Chemical EngineeringGeneral Physics and Astronomy02 engineering and technologyinterpretable modelstekoälyMachine learningcomputer.software_genreLogistic regressionDomain (software engineering)020204 information systems0202 electrical engineering electronic engineering information engineeringFeature (machine learning)General Materials ScienceGeneral Environmental Scienceluokitus (toiminta)explainable artificial intelligencebusiness.industrylogistic regressionGeneral EngineeringRandom forestkoneoppiminenTrustworthinessInjury dataGeneral Earth and Planetary Sciences020201 artificial intelligence & image processingArtificial intelligencebusinesscomputerrandom forestSN Applied Sciences
researchProduct

Can we automate expert-based journal rankings? Analysis of the Finnish publication indicator

2020

The publication indicator of the Finnish research funding system is based on a manual ranking of scholarly publication channels. These ranks, which represent the evaluated quality of the channels, are continuously kept up to date and thoroughly reevaluated every four years by groups of nominated scholars belonging to different disciplinary panels. This expert-based decision-making process is informed by available citation-based metrics and other relevant metadata characterizing the publication channels. The purpose of this paper is to introduce various approaches that can explain the basis and evolution of the quality of publication channels, i.e., ranks. This is important for the academic …

tiedelehdetfeature importanceComputer scienceProcess (engineering)rankinglistatjulkaisutmedia_common.quotation_subjectLibrary and Information Sciences050905 science studiestutkimusrahoitusautomaatioperformance-based research funding systemFeature (machine learning)Quality (business)automationmedia_commonbusiness.industry05 social sciencesData scienceAutomationComputer Science ApplicationsMetadatamachine learningkoneoppiminenRanking0509 other social sciences050904 information & library sciencesbusinessCitationarviointiDisciplinetieteellinen julkaisutoimintaJournal of Informetrics
researchProduct